ABOUT ME

-

Today
-
Yesterday
-
Total
-
  • single cell analysis - after cell type annotation
    Bio-info/analysis 2025. 3. 5. 21:58

    ๐Ÿ“Œ Single-cell ๋ถ„์„์—์„œ Cell Type Annotation ์ดํ›„์— ํ•  ์ˆ˜ ์žˆ๋Š” ์ถ”๊ฐ€ ๋ถ„์„๋“ค

    Cell type annotation ์ดํ›„์—๋Š” ์„ธํฌ์˜ ํŠน์„ฑ๊ณผ ๊ธฐ๋Šฅ์„ ๋” ๊นŠ์ด ์ดํ•ดํ•˜๊ณ ,
    ํŠน์ • ์ƒ๋ฌผํ•™์  ์งˆ๋ฌธ์— ๋‹ตํ•˜๊ธฐ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ๋ถ„์„์„ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ์–ด.


    1๏ธโƒฃ ์ฐจ๋“ฑ ๋ฐœํ˜„ ์œ ์ „์ž(DEA, Differential Expression Analysis) ๋ถ„์„

    ๐Ÿ‘‰ ๊ฐ ์„ธํฌ ์œ ํ˜•์—์„œ ํŠน์ด์ ์œผ๋กœ ๋ฐœํ˜„๋˜๋Š” ์œ ์ „์ž ์ฐพ๊ธฐ

    • ๋ชฉ์ : ์„ธํฌ ์œ ํ˜• ๊ฐ„์˜ ์ฐจ์ด๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š” ํŠน์ด์ (marker) ์œ ์ „์ž ์ฐพ๊ธฐ
    • ๋ฐฉ๋ฒ•: scanpy.tl.rank_genes_groups(), Seurat::FindMarkers() ์‚ฌ์šฉ
    • ๋ถ„์„ ์˜ˆ์ œ:
      • ๋ฉด์—ญ์„ธํฌ vs. ์ข…์–‘์„ธํฌ์—์„œ ์ฐจ๋“ฑ ๋ฐœํ˜„๋˜๋Š” ์œ ์ „์ž ์ฐพ๊ธฐ
      • ํŠน์ • ์กฐ๊ฑด(์˜ˆ: ์งˆ๋ณ‘ vs. ์ •์ƒ)์—์„œ ๋ฐœํ˜„ ์ฐจ์ด๊ฐ€ ๋‚˜๋Š” ์œ ์ „์ž ๋ถ„์„
    sc.tl.rank_genes_groups(adata, groupby="cell_type", method="wilcoxon")
    sc.pl.rank_genes_groups(adata, n_genes=10, sharey=False)
    

    2๏ธโƒฃ ๋ฐœํ˜„ ์‹œ๊ทธ๋‹ˆ์ฒ˜ ๋ถ„์„ (Gene Set Enrichment Analysis, GSEA)

    ๐Ÿ‘‰ ํŠน์ • ์„ธํฌ ์œ ํ˜•์—์„œ ํ™œ์„ฑํ™”๋œ ์ƒ๋ฌผํ•™์  ๊ฒฝ๋กœ(pathway) ๋ถ„์„

    • ๋ชฉ์ : ํŠน์ • ์„ธํฌ ์œ ํ˜•์—์„œ ์–ด๋–ค ๊ธฐ๋Šฅ์ด ํ™œ์„ฑํ™”๋˜๋Š”์ง€ ํŒŒ์•…
    • ๋ฐฉ๋ฒ•: GSEA, AUCell, GSVA, singscore ๋“ฑ์˜ ๋ฐฉ๋ฒ• ์‚ฌ์šฉ
    • ์˜ˆ์ œ:
      • T์„ธํฌ์—์„œ ๋ฉด์—ญ ๋ฐ˜์‘ ๊ด€๋ จ ๊ฒฝ๋กœ(IFN-γ signaling)๊ฐ€ ํ™œ์„ฑํ™”๋˜๋Š”์ง€ ๋ถ„์„
      • ์•”์„ธํฌ์—์„œ ์„ธํฌ ์ฆ์‹(growth) ๊ด€๋ จ ๊ฒฝ๋กœ๊ฐ€ ํ™œ์„ฑํ™”๋˜๋Š”์ง€ ํ™•์ธ
    import gseapy as gp
    gp.enrichr(gene_list=marker_genes, gene_sets='KEGG_2019_Human', organism='human')
    

    3๏ธโƒฃ ์„ธํฌ ์ƒํ˜ธ์ž‘์šฉ ๋ถ„์„ (Cell-Cell Communication)

    ๐Ÿ‘‰ ์„ธํฌ ๊ฐ„ ๋ฆฌ๊ฐ„๋“œ-์ˆ˜์šฉ์ฒด(ligand-receptor) ์ƒํ˜ธ์ž‘์šฉ ๋ถ„์„

    • ๋ชฉ์ : ์„ธํฌ ๊ฐ„ ์‹ ํ˜ธ ์ „๋‹ฌ ๋ฐ ์˜์‚ฌ์†Œํ†ต ํ™•์ธ
    • ๋„๊ตฌ:
      • CellPhoneDB (cellphonedb method statistical_analysis)
      • NicheNet (ligand-target ์˜ˆ์ธก)
      • CellChat (R ํŒจํ‚ค์ง€)
    cellphonedb method statistical_analysis your_meta.txt your_counts.txt
    
    • ์˜ˆ์ œ:
      • ๋ฉด์—ญ์„ธํฌ(T cell)์™€ ์ข…์–‘์„ธํฌ ๊ฐ„ ์‹ ํ˜ธ ์ „๋‹ฌ ๋ถ„์„
      • ์„ฌ์œ ์•„์„ธํฌ์™€ ์•”์„ธํฌ ๊ฐ„ ์ƒํ˜ธ์ž‘์šฉ ๋„คํŠธ์›Œํฌ ํ™•์ธ

    4๏ธโƒฃ ์˜์‚ฌ๋ฐœ์ƒ ๋ถ„์„ (Pseudotime Analysis)

    ๐Ÿ‘‰ ์„ธํฌ๊ฐ€ ๋ถ„ํ™”ํ•˜๋Š” ๊ณผ์ • ์ถ”์ 

    • ๋ชฉ์ : ์„ธํฌ๊ฐ€ ํŠน์ • ์ƒํƒœ์—์„œ ๋‹ค๋ฅธ ์ƒํƒœ๋กœ ๋ณ€ํ™”ํ•˜๋Š” ๊ณผ์ •์„ ์žฌ๊ตฌ์„ฑ
    • ๋„๊ตฌ:
      • Monocle3 (R)
      • Scanpy.tl.dpt() (Python)
      • Slingshot (R)
    sc.tl.dpt(adata)
    sc.pl.dpt_groups_pseudotime(adata)
    
    • ์˜ˆ์ œ:
      • ์ค„๊ธฐ์„ธํฌ์—์„œ ๋ถ„ํ™”ํ•˜๋Š” ๊ณผ์ • ์ถ”์ 
      • ์•”์„ธํฌ๊ฐ€ ์ •์ƒ ์„ธํฌ์—์„œ ๋ณ€ํ˜•๋˜๋Š” ๊ฒฝ๋กœ ๋ถ„์„

    5๏ธโƒฃ ์„ธํฌ ์•„ํ˜•(Subtype) ๋ถ„์„ ๋ฐ ํด๋Ÿฌ์Šคํ„ฐ ์„ธ๋ถ„ํ™”

    ๐Ÿ‘‰ ์ด๋ฏธ ๋ถ„๋ฅ˜ํ•œ ์„ธํฌ ์œ ํ˜•์„ ๋” ์„ธ๋ถ„ํ™”ํ•˜์—ฌ ๋ถ„์„

    • ๋ชฉ์ : ๊ฐ™์€ ์„ธํฌ ํƒ€์ž… ๋‚ด์—์„œ๋„ ๊ธฐ๋Šฅ์ด ๋‹ค๋ฅธ ์„ธํฌ ์ง‘๋‹จ์ด ์žˆ๋Š”์ง€ ํƒ์ƒ‰
    • ๋ฐฉ๋ฒ•:
      • ํŠน์ • ์„ธํฌ ์œ ํ˜•๋งŒ ํ•„ํ„ฐ๋ง ํ›„ ๋‹ค์‹œ clustering ์ˆ˜ํ–‰
      • ํŠน์ • ๋งˆ์ปค ์œ ์ „์ž ๋ฐœํ˜„ ํŒจํ„ด ๊ธฐ๋ฐ˜์œผ๋กœ ์•„ํ˜•(subtype) ์ •์˜
    adata_subset = adata[adata.obs['cell_type'] == 'T cell']
    sc.tl.leiden(adata_subset, resolution=1.0)
    sc.pl.umap(adata_subset, color='leiden')
    
    • ์˜ˆ์ œ:
      • CD8+ T์„ธํฌ๋ฅผ ์„ธ๋ถ„ํ™”ํ•˜์—ฌ effector, memory T cell ๊ตฌ๋ถ„
      • ์•”์„ธํฌ ํด๋Ÿฌ์Šคํ„ฐ๋ฅผ ๋” ์„ธ๋ถ€์ ์œผ๋กœ ๋‚˜๋ˆ„์–ด ์ด์งˆ์„ฑ ๋ถ„์„

    6๏ธโƒฃ ์ „์‚ฌ์ธ์ž ๋„คํŠธ์›Œํฌ ๋ถ„์„ (Transcription Factor Network)

    ๐Ÿ‘‰ ํŠน์ • ์„ธํฌ ์œ ํ˜•์—์„œ ์ค‘์š”ํ•œ ์ „์‚ฌ์ธ์ž ์ฐพ๊ธฐ

    • ๋ชฉ์ : ์„ธํฌ ํŠน์ด์  ์ „์‚ฌ์ธ์ž(transcription factor, TF)๋ฅผ ๋ถ„์„ํ•˜์—ฌ ์กฐ์ ˆ ๋„คํŠธ์›Œํฌ ํŒŒ์•…
    • ๋„๊ตฌ: SCENIC (Python & R), DoRothEA, GRNboost2
    import pyscenic
    pyscenic.run(...)
    
    • ์˜ˆ์ œ:
      • ๋ฉด์—ญ์„ธํฌ์—์„œ FOXO1, T-bet๊ณผ ๊ฐ™์€ ์ „์‚ฌ์ธ์ž์˜ ์—ญํ•  ๋ถ„์„
      • ์•”์„ธํฌ์—์„œ MYC, TP53 ๋“ฑ์˜ ์กฐ์ ˆ ๋„คํŠธ์›Œํฌ ํ™•์ธ

    7๏ธโƒฃ ์„ธํฌ ๋ฉ”ํƒ€๋ณผ๋ฆฌ์ฆ˜ ๋ถ„์„ (Metabolic Analysis)

    ๐Ÿ‘‰ ์„ธํฌ ์œ ํ˜•๋ณ„ ๋Œ€์‚ฌ ๊ฒฝ๋กœ(metabolic pathway) ํŠน์„ฑ ๋ถ„์„

    • ๋ชฉ์ : ์„ธํฌ ์ƒํƒœ์— ๋”ฐ๋ผ ๋Œ€์‚ฌ ํ™œ์„ฑํ™” ํŒจํ„ด์ด ์–ด๋–ป๊ฒŒ ๋‹ค๋ฅธ์ง€ ํ™•์ธ
    • ๋„๊ตฌ:
      • scFEA (single-cell flux estimation)
      • MOUSE (metabolism analysis)
    import scFEA
    scFEA.analyze(adata)
    
    • ์˜ˆ์ œ:
      • ์ข…์–‘์„ธํฌ์™€ ์ •์ƒ์„ธํฌ ๊ฐ„ ๋Œ€์‚ฌ ์ฐจ์ด ๋ถ„์„ (์˜ˆ: Warburg effect)
      • ์ค„๊ธฐ์„ธํฌ vs. ๋ถ„ํ™”๋œ ์„ธํฌ์˜ ๋Œ€์‚ฌ ํŒจํ„ด ๋น„๊ต

    8๏ธโƒฃ ๊ณต๊ฐ„ ์ „์‚ฌ์ฒด ๋ถ„์„๊ณผ ํ†ตํ•ฉ (Spatial Transcriptomics Integration)

    ๐Ÿ‘‰ single-cell ๋ฐ์ดํ„ฐ๋ฅผ ๊ณต๊ฐ„ ์ „์‚ฌ์ฒด ๋ฐ์ดํ„ฐ์™€ ํ†ตํ•ฉํ•˜์—ฌ ๋ถ„์„

    • ๋ชฉ์ : ํŠน์ • ์กฐ์ง ๋‚ด์—์„œ ์„ธํฌ๊ฐ€ ์–ด๋–ป๊ฒŒ ๋ถ„ํฌํ•˜๋Š”์ง€ ์ดํ•ด
    • ๋„๊ตฌ:
      • Seurat v4 (R)
      • stLearn (Python)
      • SPOTlight (cell type deconvolution)
    import stlearn
    stlearn.load()
    
    • ์˜ˆ์ œ:
      • ์ข…์–‘ ์กฐ์ง ๋‚ด ํŠน์ • ๋ฉด์—ญ์„ธํฌ์˜ ๊ณต๊ฐ„์  ์œ„์น˜ ๋ถ„์„
      • ์‹ ๊ฒฝ์„ธํฌ์—์„œ ํŠน์ • ์˜์—ญ(์˜ˆ: hippocampus)์—์„œ ํ™œ์„ฑํ™”๋œ ์œ ์ „์ž ํŒจํ„ด ํ™•์ธ

    ๐Ÿ“Œ ์ •๋ฆฌ: Cell Type Annotation ์ดํ›„ ๊ฐ€๋Šฅํ•œ ๋ถ„์„

    ๋ถ„์„ ์œ ํ˜• ์ฃผ์š” ๋ชฉ์  ์‚ฌ์šฉ ๋„๊ตฌ

    ์ฐจ๋“ฑ ๋ฐœํ˜„ ๋ถ„์„ (DEA) ์„ธํฌ ์œ ํ˜•๋ณ„ ํŠน์ด ์œ ์ „์ž ์ฐพ๊ธฐ Scanpy, Seurat
    ๋ฐœํ˜„ ์‹œ๊ทธ๋‹ˆ์ฒ˜ ๋ถ„์„ (GSEA) ๊ธฐ๋Šฅ์  ๊ฒฝ๋กœ ํ™œ์„ฑํ™” ๋ถ„์„ GSEA, AUCell
    ์„ธํฌ ์ƒํ˜ธ์ž‘์šฉ ๋ถ„์„ ๋ฆฌ๊ฐ„๋“œ-์ˆ˜์šฉ์ฒด ๋„คํŠธ์›Œํฌ ๋ถ„์„ CellPhoneDB, CellChat
    ์˜์‚ฌ๋ฐœ์ƒ ๋ถ„์„ (Pseudotime) ์„ธํฌ ๋ถ„ํ™” ๊ณผ์ • ์ถ”์  Monocle, Scanpy
    ์„ธํฌ ์•„ํ˜• ๋ถ„์„ ๊ฐ™์€ ์„ธํฌ ์œ ํ˜• ๋‚ด ์„ธ๋ถ€ ํด๋Ÿฌ์Šคํ„ฐ๋ง Scanpy, Seurat
    ์ „์‚ฌ์ธ์ž ๋„คํŠธ์›Œํฌ ๋ถ„์„ ์„ธํฌ ํŠน์ด์  ์ „์‚ฌ์ธ์ž ์ฐพ๊ธฐ SCENIC, DoRothEA
    ์„ธํฌ ๋ฉ”ํƒ€๋ณผ๋ฆฌ์ฆ˜ ๋ถ„์„ ์„ธํฌ ์œ ํ˜•๋ณ„ ๋Œ€์‚ฌ ๊ฒฝ๋กœ ๋ถ„์„ scFEA, MOUSE
    ๊ณต๊ฐ„ ์ „์‚ฌ์ฒด ํ†ตํ•ฉ ๋ถ„์„ ์„ธํฌ ์œ ํ˜•์˜ ๊ณต๊ฐ„์  ๋ถ„ํฌ ๋ถ„์„ Seurat v4, stLearn

    ๐Ÿ’ก ๊ฒฐ๋ก 

    Cell Type Annotation ์ดํ›„์—๋Š” ๋‹ค์–‘ํ•œ ํ›„์† ๋ถ„์„์ด ๊ฐ€๋Šฅํ•˜๋ฉฐ, ์—ฐ๊ตฌ ๋ชฉ์ ์— ๋”ฐ๋ผ ์„ธํฌ ๊ฐ„ ์ฐจ์ด๋ฅผ ๋ถ„์„ํ•˜๊ฑฐ๋‚˜, ์œ ์ „์ž ์กฐ์ ˆ ๋„คํŠธ์›Œํฌ๋ฅผ ํƒ์ƒ‰ํ•˜๊ฑฐ๋‚˜, ์„ธํฌ ๊ฐ„ ์ƒํ˜ธ์ž‘์šฉ์„ ์—ฐ๊ตฌํ•  ์ˆ˜ ์žˆ์–ด. ๐Ÿš€

    ํŠน์ • ๋ถ„์„์— ๋Œ€ํ•ด ๋” ๊นŠ์ด ์•Œ๊ณ  ์‹ถ์œผ๋ฉด ์งˆ๋ฌธํ•ด์ค˜! ๐Ÿ˜Š

    'Bio-info > analysis' ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๋‹ค๋ฅธ ๊ธ€

    single cell ๋ถ„์„ - cluster ๊ฐœ์ˆ˜ ์ •ํ•˜๊ธฐ  (1) 2025.03.05
    single-cell analysis  (0) 2025.03.05
    single cell - spatial transcription analysis  (0) 2023.03.29
    GSEA ๋ถ„์„  (0) 2023.03.10
Designed by Tistory.